ml-schoo-and-maybe-andrew-ng/work/C1_W2_Lab06_Sklearn_Normal_...

242 lines
6.7 KiB
Plaintext
Raw Permalink Normal View History

2022-11-15 10:53:25 -05:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Optional Lab: Linear Regression using Scikit-Learn"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There is an open-source, commercially usable machine learning toolkit called [scikit-learn](https://scikit-learn.org/stable/index.html). This toolkit contains implementations of many of the algorithms that you will work with in this course.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Goals\n",
"In this lab you will:\n",
"- Utilize scikit-learn to implement linear regression using a close form solution based on the normal equation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tools\n",
"You will utilize functions from scikit-learn as well as matplotlib and NumPy. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.linear_model import LinearRegression\n",
"from lab_utils_multi import load_house_data\n",
"plt.style.use('./deeplearning.mplstyle')\n",
"np.set_printoptions(precision=2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a name=\"toc_40291_2\"></a>\n",
"# Linear Regression, closed-form solution\n",
"Scikit-learn has the [linear regression model](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression) which implements a closed-form linear regression.\n",
"\n",
"Let's use the data from the early labs - a house with 1000 square feet sold for \\\\$300,000 and a house with 2000 square feet sold for \\\\$500,000.\n",
"\n",
"| Size (1000 sqft) | Price (1000s of dollars) |\n",
"| ----------------| ------------------------ |\n",
"| 1 | 300 |\n",
"| 2 | 500 |\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load the data set"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train = np.array([1.0, 2.0]) #features\n",
"y_train = np.array([300, 500]) #target value"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create and fit the model\n",
"The code below performs regression using scikit-learn. \n",
"The first step creates a regression object. \n",
"The second step utilizes one of the methods associated with the object, `fit`. This performs regression, fitting the parameters to the input data. The toolkit expects a two-dimensional X matrix."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"linear_model = LinearRegression()\n",
"#X must be a 2-D Matrix\n",
"linear_model.fit(X_train.reshape(-1, 1), y_train) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### View Parameters \n",
"The $\\mathbf{w}$ and $\\mathbf{b}$ parameters are referred to as 'coefficients' and 'intercept' in scikit-learn."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b = linear_model.intercept_\n",
"w = linear_model.coef_\n",
"print(f\"w = {w:}, b = {b:0.2f}\")\n",
"print(f\"'manual' prediction: f_wb = wx+b : {1200*w + b}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Make Predictions\n",
"\n",
"Calling the `predict` function generates predictions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_pred = linear_model.predict(X_train.reshape(-1, 1))\n",
"\n",
"print(\"Prediction on training set:\", y_pred)\n",
"\n",
"X_test = np.array([[1200]])\n",
"print(f\"Prediction for 1200 sqft house: ${linear_model.predict(X_test)[0]:0.2f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Second Example\n",
"The second example is from an earlier lab with multiple features. The final parameter values and predictions are very close to the results from the un-normalized 'long-run' from that lab. That un-normalized run took hours to produce results, while this is nearly instantaneous. The closed-form solution work well on smaller data sets such as these but can be computationally demanding on larger data sets. \n",
">The closed-form solution does not require normalization."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# load the dataset\n",
"X_train, y_train = load_house_data()\n",
"X_features = ['size(sqft)','bedrooms','floors','age']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"linear_model = LinearRegression()\n",
"linear_model.fit(X_train, y_train) "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b = linear_model.intercept_\n",
"w = linear_model.coef_\n",
"print(f\"w = {w:}, b = {b:0.2f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(f\"Prediction on training set:\\n {linear_model.predict(X_train)[:4]}\" )\n",
"print(f\"prediction using w,b:\\n {(X_train @ w + b)[:4]}\")\n",
"print(f\"Target values \\n {y_train[:4]}\")\n",
"\n",
"x_house = np.array([1200, 3,1, 40]).reshape(-1,4)\n",
"x_house_predict = linear_model.predict(x_house)[0]\n",
"print(f\" predicted price of a house with 1200 sqft, 3 bedrooms, 1 floor, 40 years old = ${x_house_predict*1000:0.2f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Congratulations!\n",
"In this lab you:\n",
"- utilized an open-source machine learning toolkit, scikit-learn\n",
"- implemented linear regression using a close-form solution from that toolkit"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}