{ "cells": [ { "cell_type": "markdown", "id": "expected-characterization", "metadata": {}, "source": [ "# Ungraded Lab: Linear Regression using Scikit-Learn" ] }, { "cell_type": "markdown", "id": "gorgeous-lincoln", "metadata": {}, "source": [ "Now that you've implemented linear regression from scratch, let's see you can train a linear regression model using scikit-learn.\n", "\n", "## Dataset \n", "Let's start with the same dataset as before." ] }, { "cell_type": "code", "execution_count": null, "id": "mobile-firmware", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "# X is the input variable (size in square feet)\n", "# y in the output variable (price in 1000s of dollars)\n", "X = np.array([1000, 2000])\n", "y = np.array([200, 400])" ] }, { "cell_type": "markdown", "id": "offshore-lease", "metadata": {}, "source": [ "## Fit the model\n", "\n", "The code below imports the [linear regression model](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression) from scikit-learn. You can fit this model on the training data by calling `fit` function." ] }, { "cell_type": "code", "execution_count": null, "id": "monetary-tactics", "metadata": {}, "outputs": [], "source": [ "from sklearn.linear_model import LinearRegression\n", "\n", "linear_model = LinearRegression()\n", "# We have to reshape X using .reshape(-1, 1) because our data has a single feature\n", "# If X has multiple features, you don't need to reshape\n", "linear_model.fit(X.reshape(-1, 1), y) " ] }, { "cell_type": "markdown", "id": "thick-seven", "metadata": {}, "source": [ "## Make Predictions\n", "\n", "You can see the predictions made by this model by calling the `predict` function." ] }, { "cell_type": "code", "execution_count": null, "id": "norwegian-variety", "metadata": {}, "outputs": [], "source": [ "y_pred = linear_model.predict(X.reshape(-1,1))\n", "\n", "print(\"Prediction on training set:\", y_pred)" ] }, { "cell_type": "markdown", "id": "geographic-archive", "metadata": {}, "source": [ "## Calculate accuracy\n", "\n", "You can calculate this accuracy of this model by calling the `score` function." ] }, { "cell_type": "code", "execution_count": null, "id": "immune-password", "metadata": {}, "outputs": [], "source": [ "print(\"Accuracy on training set:\", linear_model.score(X.reshape(-1,1), y))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }