{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Optional Lab: Brief Introduction to Python and Jupyter Notebooks\n", "Welcome to the first optional lab! \n", "Optional labs are available to:\n", "- provide information - like this notebook\n", "- reinforce lecture material with hands-on examples\n", "- provide working examples of routines used in the graded labs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Goals\n", "In this lab, you will:\n", "- Get a brief introduction to Jupyter notebooks\n", "- Take a tour of Jupyter notebooks\n", "- Learn the difference between markdown cells and code cells\n", "- Practice some basic python\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The easiest way to become familiar with Jupyter notebooks is to take the tour available above in the Help menu:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "
missing
\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Jupyter notebooks have two types of cells that are used in this course. Cells such as this which contain documentation called `Markdown Cells`. The name is derived from the simple formatting language used in the cells. You will not be required to produce markdown cells. Its useful to understand the `cell pulldown` shown in graphic below. Occasionally, a cell will end up in the wrong mode and you may need to restore it to the right state:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", " missing\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The other type of cell is the `code cell` where you will write your code:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This is code cell\n" ] } ], "source": [ "#This is a 'Code' Cell\n", "print(\"This is code cell\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Python\n", "You can write your code in the code cells. \n", "To run the code, select the cell and either\n", "- hold the shift-key down and hit 'enter' or 'return'\n", "- click the 'run' arrow above\n", "
\n", " \n", "
\n", "\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Print statement\n", "Print statements will generally use the python f-string style. \n", "Try creating your own print in the following cell. \n", "Try both methods of running the cell." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "f strings allow you to embed variables right in the strings!\n" ] } ], "source": [ "# print statements\n", "variable = \"right in the strings!\"\n", "print(f\"f strings allow you to embed variables {variable}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Congratulations!\n", "You now know how to find your way around a Jupyter Notebook." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 5 }