479 lines
45 KiB
Plaintext
479 lines
45 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Optional Lab: Model Representation\n",
|
|
"\n",
|
|
"<figure>\n",
|
|
" <img src=\"./images/C1_W1_L3_S1_Lecture_b.png\" style=\"width:600px;height:200px;\">\n",
|
|
"</figure>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Goals\n",
|
|
"In this lab you will:\n",
|
|
"- Learn to implement the model $f_{w,b}$ for linear regression with one variable"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Notation\n",
|
|
"Here is a summary of some of the notation you will encounter. \n",
|
|
"\n",
|
|
"|General <img width=70/> <br /> Notation <img width=70/> | Description<img width=350/>| Python (if applicable) |\n",
|
|
"|: ------------|: ------------------------------------------------------------||\n",
|
|
"| $a$ | scalar, non bold ||\n",
|
|
"| $\\mathbf{a}$ | vector, bold ||\n",
|
|
"| **Regression** | | | |\n",
|
|
"| $\\mathbf{x}$ | Training Example feature values (in this lab - Size (1000 sqft)) | `x_train` | \n",
|
|
"| $\\mathbf{y}$ | Training Example targets (in this lab Price (1000s of dollars)) | `y_train` \n",
|
|
"| $x^{(i)}$, $y^{(i)}$ | $i_{th}$Training Example | `x_i`, `y_i`|\n",
|
|
"| m | Number of training examples | `m`|\n",
|
|
"| $w$ | parameter: weight | `w` |\n",
|
|
"| $b$ | parameter: bias | `b` | \n",
|
|
"| $f_{w,b}(x^{(i)})$ | The result of the model evaluation at $x^{(i)}$ parameterized by $w,b$: $f_{w,b}(x^{(i)}) = wx^{(i)}+b$ | `f_wb` | \n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Tools\n",
|
|
"In this lab you will make use of: \n",
|
|
"- NumPy, a popular library for scientific computing\n",
|
|
"- Matplotlib, a popular library for plotting data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"plt.style.use('./deeplearning.mplstyle')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Problem Statement\n",
|
|
"<img align=\"left\" src=\"./images/C1_W1_L3_S1_trainingdata.png\" style=\" width:380px; padding: 10px; \" /> \n",
|
|
"\n",
|
|
"As in the lecture, you will use the motivating example of housing price prediction. \n",
|
|
"This lab will use a simple data set with only two data points - a house with 1000 square feet(sqft) sold for \\\\$300,000 and a house with 2000 square feet sold for \\\\$500,000. These two points will constitute our *data or training set*. In this lab, the units of size are 1000 sqft and the units of price are 1000s of dollars.\n",
|
|
"\n",
|
|
"| Size (1000 sqft) | Price (1000s of dollars) |\n",
|
|
"| -------------------| ------------------------ |\n",
|
|
"| 1.0 | 300 |\n",
|
|
"| 2.0 | 500 |\n",
|
|
"\n",
|
|
"You would like to fit a linear regression model (shown above as the blue straight line) through these two points, so you can then predict price for other houses - say, a house with 1200 sqft.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Please run the following code cell to create your `x_train` and `y_train` variables. The data is stored in one-dimensional NumPy arrays."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"x_train = [1. 2.]\n",
|
|
"y_train = [300. 500.]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# x_train is the input variable (size in 1000 square feet)\n",
|
|
"# y_train is the target (price in 1000s of dollars)\n",
|
|
"x_train = np.array([1.0, 2.0])\n",
|
|
"y_train = np.array([300.0, 500.0])\n",
|
|
"print(f\"x_train = {x_train}\")\n",
|
|
"print(f\"y_train = {y_train}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
">**Note**: The course will frequently utilize the python 'f-string' output formatting described [here](https://docs.python.org/3/tutorial/inputoutput.html) when printing. The content between the curly braces is evaluated when producing the output."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Number of training examples `m`\n",
|
|
"You will use `m` to denote the number of training examples. Numpy arrays have a `.shape` parameter. `x_train.shape` returns a python tuple with an entry for each dimension. `x_train.shape[0]` is the length of the array and number of examples as shown below."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"x_train.shape: (2,)\n",
|
|
"Number of training examples is: 2\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# m is the number of training examples\n",
|
|
"print(f\"x_train.shape: {x_train.shape}\")\n",
|
|
"m = x_train.shape[0]\n",
|
|
"print(f\"Number of training examples is: {m}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"One can also use the Python `len()` function as shown below."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Number of training examples is: 2\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# m is the number of training examples\n",
|
|
"m = len(x_train)\n",
|
|
"print(f\"Number of training examples is: {m}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Training example `x_i, y_i`\n",
|
|
"\n",
|
|
"You will use (x$^{(i)}$, y$^{(i)}$) to denote the $i^{th}$ training example. Since Python is zero indexed, (x$^{(0)}$, y$^{(0)}$) is (1.0, 300.0) and (x$^{(1)}$, y$^{(1)}$) is (2.0, 500.0). \n",
|
|
"\n",
|
|
"To access a value in a Numpy array, one indexes the array with the desired offset. For example the syntax to access location zero of `x_train` is `x_train[0]`.\n",
|
|
"Run the next code block below to get the $i^{th}$ training example."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"(x^(0), y^(0)) = (1.0, 300.0)\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"i = 0 # Change this to 1 to see (x^1, y^1)\n",
|
|
"\n",
|
|
"x_i = x_train[i]\n",
|
|
"y_i = y_train[i]\n",
|
|
"print(f\"(x^({i}), y^({i})) = ({x_i}, {y_i})\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Plotting the data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"You can plot these two points using the `scatter()` function in the `matplotlib` library, as shown in the cell below. \n",
|
|
"- The function arguments `marker` and `c` show the points as red crosses (the default is blue dots).\n",
|
|
"\n",
|
|
"You can use other functions in the `matplotlib` library to set the title and labels to display"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAERCAYAAAB8eMxzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de1QV9d7H8Tc30VAuKqWgmYmgIoiaiQSIiihFXlrVScmIzjE6abfT0+2sk+XxeSofO5w0KzN71LyXXRRLLUpEMI9ZXtpmeE1NJBVU0HS7gXn+oHYSChthIN2f11os9v7Nnpnvz7X87OE3M79xMQzDQEREnIZrYxcgIiINS8EvIuJkFPwiIk5GwS8i4mQU/CIiTkbBLyLiZBT88od03XXXsWHDhkptDzzwAM8//7xp+wwNDeWrr76q123OmTMHd3d3mjdvjo+PD5GRkXz55ZcNWoPI7yn4RX6xfft2+vTpU+/bjY+P59SpUxw7dozY2Fhuu+02fn/7jM1mM7UGkfMp+OWyNXXqVDp27MjVV19NWloaZ86cASqOsocOHWr/3A8//EDTpk0BKC8vZ9y4cbRu3dp+BP5r6J7/V0ZcXBz//Oc/ueGGG/Dx8WHUqFGcO3fOvs3nn38ef39/goODefnll7nuuutqrNfDw4OUlBQKCgooLCwkLi6OCRMm0KtXL3x9favUcPr0aR588EECAwPx8/NjzJgx9m0tXbqU0NBQWrZsybBhwzhy5AgAP/30EwkJCfj4+NCqVSvGjx9/qf+8cgVT8MtlafXq1bz88st8+umn7Nq1iz179jBp0qQa1/v000/ZuHEj+/bto6ioiFdeeQVX1wv/N3jvvff44IMP2L9/P9u2bWPJkiUAZGRkMHfuXL766ivWr1/P0qVLHar53LlzzJkzh8DAQFq3bg3AokWLWLp0KceOHavy+UcffZQDBw6wdetWjhw5QlpaGgBfffUVf/vb31i8eDE//fQTXbp04a9//SsA//73v+ncuTOFhYX8+OOPlb4sRH6l4Jc/rMGDB+Pr62v/mT17tn3ZkiVLSEtLo3Pnzvj4+DBhwgQWL15c4zY9PDwoKSlh586duLq6EhkZiZub2wU/O3bsWK699lp8fX255ZZb2Lp1KwDvv/8+Y8eO5brrrqN169Y8/PDD1e7z888/x9fXl8DAQL766is+/PDDSvu4/vrradasWaV1ysvLmTdvHtOmTaN169Z4eHgQHR0NwNtvv8348eMJCwvDw8ODCRMmsHz5ckpLS/Hw8ODw4cMcOnSIZs2a0bdv3xr/TcT5KPjlD+uzzz7jxIkT9p/U1FT7svz8fNq3b29/36FDBw4fPlzjNgcNGsTYsWNJSUkhMDCw2pPFV199tf31VVddxalTpwAoKCigXbt29mWBgYE17vPEiRMcPXqUrKysSmP45/fhfEePHuXcuXMXHEI6cOAAEydOtH8htmvXDnd3dwoKCnjiiScIDAwkKiqK7t278/7771dbmzgnBb9clgICAjh48KD9/YEDB2jbti0AXl5e/Pzzz/ZlP/30U6V1H3/8cSwWC9nZ2bz99tt89tlntdp3mzZtOHTokP39+a9ry8XF5YLt/v7+NGnShP3791dZFhgYyAsvvFDpS/HMmTO0a9cOb29vXn31VQ4dOsS//vUvRo8ebf/CEvmVgl8uS3fccQczZ85k9+7dFBcXM2nSJO68804AwsPD+frrr8nLy6OkpISXXnrJvt6mTZv4+uuvKSsrw9vbG3d394sO9VzMbbfdxltvvcX+/fspLCxk+vTp9do3AFdXV+655x4eeeQRCgsLsdls5ObmApCamsq0adPsQ09FRUUsW7YMgE8++YQffvgBAD8/P1xcXGrdP7nyKfjlspSYmMhjjz3GoEGDCAoKokOHDkyYMAGAkJAQnnzySfr160ePHj0YMmSIfb2TJ0+SkpKCj48P4eHhjBo1ioEDB9Zq38OGDePuu++md+/e9O3bl1tuuQVPT8967R9Aeno6AQEBhIaGcs011zBz5kwAoqKimDJlCvfccw/e3t706tXL/qXw/fffExsbS/PmzUlOTmbu3LlVzh+IuGg+fpG6eeedd5gzZw5ffPFFY5ci4hAd8YtcgmXLllFaWsqBAwd4+eWXGT58eGOXJOIwHfGLXIL+/fvzzTff4OXlxZ133snLL79MkyZNGrssEYco+EVEnIyGekREnIx7YxdQnZMnTzZ2CSIilzUfH58qbTriFxFxMgp+EREn84ce6jnfhf5cERGRqmoaJtcRv4iIk1Hwi4g4GQW/iIiTUfCLiPzRTJwIvz5YaPHiivf1yLTg/+GHH7jmmmuIi4sjISEBgClTphAdHU1ycrL9OacLFiwgKiqKpKQkiouLzSpHROTy8PzzFT/JyTBiRMXvX9vqialH/IMHDyYrK4tPP/2Uo0ePsmbNGnJycggPD+ejjz7CZrMxY8YMsrOzGTNmDG+++aaZ5YiI/LFNnPjb0X15OSxbVvH798vqyNTgX7NmDTExMfz73/9m48aNxMXFARAfH8+GDRvYuXMnYWFhuLu729tERJxWSAi4XiSWXV0rltcD067jb9u2LTt37sTT05Phw4dTXFzMNddcA1Rck3/8+HFOnDiBt7d3pTYREad1110VY/q/PFGtkltvrVheD0w74vf09MTLywt3d3eSkpIICgqyj+EXFxfbHxT9+zYREae1eDFkZFx4WUbGbyd868i04C8pKbG/zs3NJSgoiLVr1wKQmZlJZGQkwcHBWCwWysrK7G0iIk4rL++3Mf3fKy+vWF4PTAv+devW0bt3b6KioggICKBv377ExsYSHR3Nli1bGDFiBB4eHowdO5aYmBjmzp1LWlqaWeWIiPzxPfdcxQ9UjOkPH/7bmP/5y+roD/0glvPnm9BcPSLiNCZOrDiR++uYf15erUK/puxU8IuIXGFqyk7duSsi4mQU/CIiTkbBLyLiZBT8IiJORsEvIuJkFPwiIk5GwS8i4mQU/CIiTkbBLyLiZBT8IiJORsEvIuJkFPwiIk5GwS8i4mQU/CIiTkbBLyLiZEwP/vT0dPtTt+Li4oiLi6Njx4688sorAISEhNjbv/vuO7PLERFxeu5mbtxqtbJ161YAIiIiyMrKAmD48OEkJSUB4O/vb28XERHzmXrEP2vWLFJSUiq1nT59moKCAoKCggAoKioiNjaWtLQ0zp49a2Y5IiKCicFvs9lYu3YtAwcOrNS+cuVKhg4dan+fk5NDdnY2HTp0YObMmWaVIyIivzAt+OfNm8fo0aOrtH/44Yfcdttt9vctW7YEYOTIkVgsFrPKERGRX5gW/Hl5ebzxxhsMHTqU7du38+qrr2Kz2dixYwc9evQA4Ny5c1itVgByc3Pp1KmTWeWIiMgvTDu5O3nyZPvr6OhoHnroIVavXl1p6Of48eMkJibSvHlz/Pz8mD9/vlnliIjIL1wMwzAau4iLOXnypP21j49PI1YiInL5qCk7dQOXiIiTUfCLiDgZBb+IiJNR8IuIOBkFv4iIk1Hwi4g4GQW/iIiTUfCLiDgZBb+IiJNR8IuIOJka5+qxWq2sXLmS//znPxQUFNC0aVO6dOlCQkICXbt2bYgaRUSkHlU7V8+ECRP47LPPiImJoWfPnvj7+2O1Wtm9ezfr1q3j1KlTvPTSS0RERJhSnObqERGpvZqys9rgX7NmDQMGDLjoxo8fP87BgwcJDw+vY5kXpuAXEam9OgX/hZgd9udT8IuI1F69zM4ZExNDSUkJR48epWfPnjz88MOMGzeu/qoUEZEG41Dwnz59mhYtWrB06VLGjh1LVlYWubm5ZtcmIiImcCj4S0tLWbt2LXPmzOHWW2+1t4mIyOXHoeB/9dVX+de//sXIkSMJDw9n37591Z70PV96ejrR0dFAxVhTXFwccXFxFBUVAbBgwQKioqJISkqiuLj4ErshIiKOqvHkbllZGX/5y1+YPXt2rTdutVq5//772bNnDzk5OURHR5OTk2NfbrPZGDhwIGvWrOH999/nwIEDPPHEE/blOrkrIlJ7dT656+bmRkFBAWfOnKn1zmfNmkVKSor9/Y4dO4iJieHpp5/GMAx27txJWFgY7u7uxMfHs2HDhlrvQ0REaqfGO3cBWrVqRc+ePRkyZAheXl729hdeeOGi69hsNtauXcu4ceOYMGECALt27cLPz48HHniAjIwMWrVqhbe3N1DxrXT8+PG69EVERBzgUPAPHjyYwYMH12rD8+bNY/To0ZXaWrZsCcCIESPYvHkzw4cPt4/rFxcX4+vrW6t9iIhI7TkU/OcP1zgqLy+PLVu2MGPGDLZv387UqVMZP348bm5u5ObmEhYWRnBwMBaLhbKyMjIzM4mMjKz1fkREpHYcCn6LxcKTTz7Jjh07sFqt9vb8/PyLrjN58mT76+joaPr370+fPn3w8vLi+uuvZ+LEibi5uTF27FhiYmLw8/Nj4cKFdeiKiIg4wqEpGyIjI3njjTe47777yMnJYfbs2Zw4cYJ//OMfphanq3pERGqvXqZsKC0tpWfPnpSVleHl5cX48eNZuXJl/VUpIiINxqGhnquuugqbzUZ4eDgTJ04kICCAU6dOmV2biIiYwKEj/jlz5lBaWsprr72GYRjs2LGD999/3+zaRETEBLWelrkhaYxfRKT2asrOaod62rZti4uLC4ZhXPB3dVf1iIjIH1O1wX/48OGGqkNERBpItcH/6aefVrtyQkJCvRYjIiLmqzb4Fy1adNFlLi4uCn4RkcuQTu6KiFxh6uUGrt27d5OQkED79u1p3749Q4YMYc+ePfVXpYiINBiHgj81NZXHHnuMgwcPcvDgQR577DHuvfdek0sTEREzOBT8xcXFJCYm2t8PHTpUj0kUEblMOTRlQ2hoKI8//jijRo3CxcWFxYsXExoaanZtIiJiAodO7p45c4bp06ezfv16DMPgpptuYvz48TRr1szU4nRyV0Sk9mrKTl3VIyJyhanTlA0dO3bExcXlosv37t1bh9JERKQxVBv833//PYZh8D//8z+0adOGP/3pTxiGwZIlS3RyV0TkMuXQUE+PHj3YunVrpbYbb7yRjRs31riD9PR0PvjgA+bNm8c999yDi4sL7dq1Y968ebi5uRESEkLbtm0BeP311+nWrZt9XQ31iIjUXr3cwNWqVStef/11CgsLKSws5LXXXsPLy6vG9axWq/0Lw9fXl4yMDLKzs+nYsSOffPIJAP7+/mRlZZGVlVUp9EVExBwOBf/ixYvZvn078fHxxMfHs2PHDpYsWVLjerNmzSIlJQUAPz8/fH19AXB3d8fNzQ2AoqIiYmNjSUtL4+zZs5faDxERcZBpV/XYbDaSk5N59913iY6OJicnB4D8/HzuuOMO1q5di7u7O0VFRbRs2ZIXXniB5s2b8/DDD9u3oaEeEZHaq5ehnksxb948Ro8eXanNarWSkpLCW2+9hbt7xXnlli1bAjBy5EgsFotZ5YiIyC8cunP3UuTl5bFlyxZmzJjB9u3befXVV9m0aRMPPvigfSz/3LlzGIaBp6cnubm5dOrUyaxyRETkF9UO9YwaNYpFixbxv//7vzz55JOXvJPo6GimTJlCQkICvXv3BuCRRx4hKiqKxMREmjdvjp+fH/Pnz6dFixb29TTUIyJSe3W6c7dbt24sWbKEu+66i48++ojffzQ4OLgeS61KwS8iUnt1Cv7Fixczd+5ccnJyuOGGGyqv6OLCF198UY+lVqXgFxGpvXqZq2fy5Mk89dRT9VuZAxT8IiK1Vy/B//PPPzN16lT7JZnR0dE8+uijmp1TROQPqF4u57zvvvs4ceIEL730Ei+++CLFxcWkpqbWX5UiItJgHLqc8/vvv2fx4sX29+Hh4URERJhWlIiImMehI35vb29WrFhhf//xxx/j7e1tWlEiImIeh8b49+zZw8MPP8yWLVtwdXWlR48eTJ061fQbrjTGLyJSe3oCl4iIk2m0uXpEROSPScEvIuJkFPwiIk7GoeD/29/+RklJCVarlQEDBtC2bVtmz55tdm0iImICh4J/zZo1tGjRgmXLltG1a1f27NnDK6+8YnZtIiJiAoeC/+zZs1itVpYuXcrtt9/OVVddZXZdIiJiEoeCPy0tjfbt21NSUsKAAQM4cOBApXnzRUTk8nHJ1/GXlpbaH59oFl3HLyJSe3W6jt8wDN577z3uvfdeEhISSEhIICUlhXfffRdXV8cuCEpPTyc6OhqAKVOmEB0dTXJyMjabDYAFCxYQFRVFUlISxcXFDndMREQuTbXpfe+997Jq1SrGjBnDtGnTmDZtGvfccw+rV68mJSWlxo1brVa2bt0KwNGjR1mzZg05OTmEh4fz0UcfYbPZmDFjBtnZ2YwZM4Y333yzfnolIiIXVe1YzZdffsnOnTsrtXXp0oVBgwY59NjFWbNmkZKSwoQJE9i4cSNxcXEAxMfHs3DhQrp160ZYWBju7u7Ex8dz//33X3pPRETEIdUe8bdt25ZZs2Zx+vRpe9vp06eZOXMmbdq0qXbDNpuNtWvXMnDgQABOnDhhn9HTx8eH48ePX7BNRETMVW3wL126lO+++45evXrRrl072rVrR+/evdmxYwdLly6tdsPz5s1j9OjR9ve+vr72Mfzi4mJ8fX0v2CYiIuaqdqjH39+f9PR00tPTa73hvLw8tmzZwowZM9i+fTubNm1i48aNPPnkk2RmZhIZGUlwcDAWi4WysjJ7m4iImKvGyzm/+uorPv74Y/Lz84GK4Z9bbrmFG2+80eGdREdHk5OTw+TJk8nIyODaa69lzpw5NGnShHnz5vHGG2/g5+fHwoULK116pMs5RURqr07z8T/99NNs2rSJUaNGERgYCMChQ4dYtGgRvXv3ZvLkySaU/BsFv4hI7dUp+IODg6tc1QMV1/cHBweza9eueirzwhT8IiK1V6cbuFq0aEFmZmaV9szMTE3ZICJymar25O7ixYt56qmnSE1Nxd/fH8MwOHbsGDfccAOLFi1qqBpFRKQeOTRXj2EYFBYWAtCqVStcXFxMLww01CMicilqys4aZ1krKChg1apVla7qGTp0KG3btq3HMkVEpKFUO8Y/bdo0Bg8ezJ49e2jZsiUtW7Zk7969JCQkMG3atIaqUURE6lGNV/Vs374dDw+PSu1Wq5WwsLALXvFTnzTUIyJSe3W6qsfDw4O9e/dWad+3b5/pc/GLiIg5qk3vWbNmkZycjJubm/0Grh9//JHy8nJmzZrVIAWKiEj9cuiqnvz8fPvJ3YCAAAICAkwvDDTUIyJyKep8VQ9cOOwtFgvdu3evY3kiItLQHHt+4gXcfPPN9VmHiIg0kGqP+M+fT/98hmFQVFRkSkEiImKuaoN/1apVzJs3j+bNm1dqNwyDL774wtTCRETEHNUG/6BBg2jRogWxsbFVlvXp08e0okRExDwOXdXTWHRVj4hI7dXpBi4REbnymBb8FouFqKgoYmJiSE1NZfPmzcTFxREXF0fHjh155ZVXAAgJCbG3f/fdd2aVIyIivzBt3oWQkBDWr18PQGpqKqWlpWRlZQEwfPhwkpKSgIoHuv/aLiIi5nM4+M+cOcPhw4cpLS21twUHB1/08+dP7Obp6Un79u0BOH36NAUFBQQFBQFQVFREbGwsXbt2ZerUqTRt2rTWnRAREcc5NNTzwgsvEBISwn333UdaWhppaWk88MADNa63fPlyunfvzpEjR2jVqhUAK1euZOjQofbP5OTkkJ2dTYcOHZg5c+YldkNERBzlUPDPnTuXvLw8srKyWLNmDWvWrHHoOv5hw4ZhsVgIDAxkxYoVAHz44Yfcdttt9s+0bNkSgJEjR2KxWC6lDyIiUgsOBX9ISAhWq7VWGz7/897e3jRr1gybzcaOHTvo0aMHAOfOnbN/Ljc3l06dOtVqHyIiUnsOjfGfO3eOrl27EhUVhaenp7194cKFF11n1apVpKenA9C5c2cSEhL47LPPGDhwoP0zx48fJzExkebNm+Pn58f8+fMvtR8iIuIgh27gWrt27QXb+/fvX+8FnU83cImI1F6dpmUuLS3F3d2dfv361X9lIiLSKKoN/hEjRrBixQpCQkJwcXGxtxuGgYuLywUfyygiIn9smqtHROQKU6e5ej799NNqN37s2DE2b958iaWJiEhjqHaoZ+PGjTz33HP069ePiIgIWrdujdVqZe/evWRnZ2MYBi+88EJD1SoiIvWgxqEem81GZmYmGzZsoKCggKZNm9KlSxeGDBnC9ddfb2pxGuoREam9mrJTY/wiIlcYzccvIiKVKPhFRJyMgl9ExMk4FPybN28mMjLSPonat99+yzPPPGNqYSIiYg6Hgv/BBx9k0aJFeHt7AxAWFkZGRoaphYmIiDkcCv7y8nI6duxYqc3Nzc2UgkRExFwOTcvcuXNn+4NUCgoKmD59Or169TK1MBERMYdDR/wzZsxg3bp1uLm5kZSURGlpKdOnTze7NhERMYFDN3CVlZVVGdq5UFt90w1cIiK1Vy83cMXExFBcXFxpo7GxsfVQnoiINDSHgv/nn3+2X9EDFd8gp0+frnYdi8VCVFQUMTExpKamYhgGPj4+xMXFERcXR1FREQALFiwgKiqKpKSkSl8uIiJiDoeC39fXl+zsbPv77OzsSl8EFxISEsL69etZt24dAJs2bSIsLIysrCyysrJo2bIlNpuNGTNmkJ2dzZgxY3jzzTfr0BUREXGEQ1f1vPHGG6SkpHDq1CkAWrRowdy5c6tdx8PDw/7a09OT9u3bs2PHDmJiYrjpppt48cUX2blzJ2FhYbi7uxMfH8/9999fh66IiIgjHAr+rl27snHjRkpKSoCK4HfE8uXL+fvf/05wcDCtWrVi165d+Pn58cADD5CRkUGrVq3sfzn4+Phw/PjxS+yGiIg4qtrgnz59OuPHj+eZZ56p9MzdX9X0EJZhw4YxbNgwHnroIVasWMHIkSOBimf5bt68meHDh9vH9YuLi/H19b3UfoiIiIOqDf4OHToA0KVLl1pv2Gq14unpCYC3tzdNmjSxXwKam5tLWFgYwcHBWCwWysrKyMzMJDIy8hK6ICIitVFt8N96662UlZWRlZXF7Nmza7XhVatWkZ6eDlTc+du2bVv69OmDl5cX119/PRMnTsTNzY2xY8cSExODn58fCxcuvPSeiIiIQxy6gSsxMZEPPviAZs2aNURNdrqBS0Sk9mrKTodO7rZq1YqePXsyZMgQvLy87O160LqIyOXHoeAfPHgwgwcPNrsWERFpADUG/4cffsjRo0fp1q0bN998c0PUJCIiJqr2zt3777+fadOmUVhYyD//+U+effbZhqpLRERMUu3J3e7du7Nt2zZcXV05c+YMN910E998802DFaeTuyIitVen2TmbNGmCq2vFRxr6ih4RETFHtWP83377LQEBAQAYhkFhYSEBAQEYhoGLiwv5+fkNUqSIiNSfaoPfZrM1VB0iItJAHJqWWURErhwKfhERJ6PgFxFxMgp+EREno+AXEXEyCn4RESej4BcRcTIKfhERJ6PgFxFxMqYFv8ViISoqipiYGFJTU9m3bx8xMTHExsYyevRoysrKAAgJCSEuLo64uDi+++47s8oREZFfmBb8ISEhrF+/nnXr1gFw7NgxMjIyyM7OpmPHjnzyyScA+Pv7k5WVRVZWFt26dTOrHBER+YVpwe/h4WF/7enpSfv27fH19QXA3d0dNzc3AIqKioiNjSUtLY2zZ8+aVY6IiPzC1DH+5cuX0717d44cOUKrVq0AyM/PJzMzk4SEBABycnLIzs6mQ4cOzJw508xyREQEk4N/2LBhWCwWAgMDWbFiBVarlZSUFN566y3c3SsmBm3ZsiUAI0eOxGKxmFmOiIhgYvBbrVb7a29vb5o1a8b999/Pgw8+aB/LP3funP1zubm5dOrUyaxyRETkFzU+bP1SrVq1ivT0dAA6d+5MixYt+OCDD9i/fz9Tp07lkUceISoqisTERJo3b46fnx/z5883qxwREflFtc/cbWx65q6ISO3V6Zm7IiJy5VHwi4g4GQW/iIiTUfCLiDgZBb+IiJNR8IuIOBkFv4iIk1Hwi4g4GQW/iIiTUfCLiDgZBb+IiJNR8IuIOBkFv4iIk1Hwi4g4GQW/iIiTuTKDf+JEWLy44vXixRXvRUQEMDH4LRYLUVFRxMTEkJqaimEYTJkyhejoaJKTk7HZbAAsWLCAqKgokpKSKC4urvuOn3++4ic5GUaMqPj9a5uIiJgX/CEhIaxfv55169YBsGnTJtasWUNOTg7h4eF89NFH2Gw2ZsyYQXZ2NmPGjOHNN9+s204nTvzt6L68HJYtq/j9+2UiIk7MtOD38PCwv/b09GTnzp3ExcUBEB8fz4YNG9i5cydhYWG4u7vb2+okJARcL9IlV9eK5SIiTs7UMf7ly5fTvXt3jhw5QmlpKd7e3kDFMyCPHz/OiRMnqrTVyV13wa23XnjZrbdWLBcRcXKmBv+wYcOwWCwEBgbi7u5uH8MvLi7G19cXX1/fKm11sngxZGRceFlGxm8nfEVEnJhpwW+1Wu2vvb29KSsrY+3atQBkZmYSGRlJcHAwFouFsrIye1ud5OX9Nqb/e+XlFctFRJycu1kbXrVqFenp6QB07tyZSZMmcfjwYaKjo7n22mt59NFH8fDwYOzYscTExODn58fChQvrttPnngPDqDiJ6+paMbyTkVER+s89V/EjIuLkXAzDMBq7iIs5efKk/bWPj4/jK06cWHEi9667KoZ38vIU+iLiNGrKzisz+EVEnFhN2Xll3rkrIiIXpeAXEXEyCn4RESdj2lU99e38MSsREbl0OuIXEXEyCn4RESfzh76cU0RE6p+O+EVEnMwVE/z5+fn06tWLpk2bUlpaWmXZwIEDiYqKIjMzs5EqrH/V9XnixIn069ePfv368fnnnzdShfWvuj4DGIZBjx49mDVrViNUV/+q6+/Zs2f585//zMCBA3nooYcaqcL6V12f165dS9++fYmMjGTGjBmNVGH9+89//mN/cNVjjz1WaZkp+WVcIc6cOWMUFRUZ/fv3N2w2W6VlDz30kJGbm2uUlJQY/fv3b5wCTVBdn/fu3WsYhmEcP37ciImJaYzyTEKGLIUAAAg4SURBVFFdnw3DMD766CMjPj7eeOuttxqhuvpXXX8nT55sZGZmNlJl5qmuz7feequxf/9+o6yszLjxxhsbqcL6d/jwYePMmTOGYRjG6NGjjW3bttmXmZFfV8wRf9OmTfHz87vgsm3bttGvXz+aN29OixYtKCkpaeDqzFFdnzt27AhUPATHxcWlIcsyVXV9Bli0aBF/+tOfGrAic1XX36ysLJYvX05cXBzLly9v4MrMU12fQ0NDOXnyJFarFS8vrwauzDxt2rShadOmALi7u+Pm5mZfZkZ+XTHBX52ysjJ7+NXLA18uI88//zxpaWmNXUaDWL16Nf3798fd/bK5PaVO9uzZwy233MLHH3/MpEmTLjj0daUZMWIESUlJdOnSheTk5MYup95t27aNY8eO0a1bN3ubGfnlFMF//rdnvTzw5TLx4YcfUlhYyOjRoxu7lAYxa9YsUlNTG7uMBuPj40P//v3x8vIiKCiIn376qbFLMt0TTzxBTk4Ou3bt4p133uHnn39u7JLqTVFREePHj+ftt9+u1G5GfjnFoVF4eDhffvkl4eHhFBcX2x/3eCXbtm0br732Gh9//HFjl9Jgdu3axYgRIzh06BCGYRAdHU2XLl0auyzTREVFsW3bNnr16sUPP/yAv79/Y5dkOjc3N3x9fWnSpAmurq7YbLbGLqlelJaWcvfddzNlyhTatGlTaZkp+VUvZwr+AM6dO2cMGjTI8PX1NQYOHGhs2LDBGD9+vGEYhnHw4EFjwIABRmRkpLF69epGrrT+VNfnhIQEo3v37kb//v2NYcOGNXKl9ae6Pv9q9uzZV8zJ3er6m5+fbwwePNjo27evMWvWrEautP5U1+eVK1caN954oxEZGWlMnDixkSutPwsXLjRat25t9O/f3+jfv7+xfv16U/NLN3CJiDgZpxjjFxGR3yj4RUScjIJfRMTJKPhFRJyMgl9ExMko+OWyMWHCBEJDQwkLCyMqKopTp06Rn5/PPffcU+dtT5o0iVWrVgHw4osvcu2111a5nvrIkSPExsYSFBTEmDFjKCsrA+DMmTMMGzaMzp07k5iYyKlTpwAoLy/nL3/5C0FBQURFRZGfn1/nOm+//XZ69OjBggULePnll+3tu3fvJiUlpc7bF+eg4JfLwvr161m/fj1bt27l22+/5Z133sHDw4OAgADeeeedOm373LlzrFixgqFDhwIwePBgNmzYUOVzL774IsnJyezevRsPDw+WLl0KwMyZMwkNDWXXrl3069eP1157DYCMjAxOnz7N7t27eeCBB5g0aVKd6iwoKGDPnj1s3bqV5OTkSsEfFBTEsWPHOHjwYJ32Ic5BwS+XhcOHD+Pv72+fhycoKAhPT09++OEHIiMjAbj55puJiIggIiKCpk2bsnXrVkpKSkhOTqZPnz707duXr7/+usq2MzMz6devn/39DTfcQEBAQJXPffzxx/bpL0aPHm2/K3rFihXcfffd1bbfeeedrF69uso2s7KyCAsLIyIigptuugmA06dPM3LkSEJDQxk3bpz9L4+kpCR27txJREQEd955J4WFhURERNin8U1MTOS9996r7T+tOKN6uQ1MxGQnT540unbtaoSHhxv/9V//ZVgsFsMwDGPfvn1G3759K312+fLlxqBBg4yysjLjiSeeMJYtW2YYhmHs2bPnglP5Pvvss8bs2bOrtF9zzTWV3gcEBNhff/fdd8agQYMMwzCMbt26GcePHzcMwzB+/vlno1OnToZhGMbNN99sbN682b5OYGCgUV5eXmmbSUlJxhdffGEYhmGcOHHCMIyK6ZYff/xxwzAMIyMjw/j1v+nv+/r7+nJzc40777yzSj9Efk9H/HJZ8Pb2ZsuWLbz00ktYrVb69evHt99+W+Vz+/fv5+mnn2bBggW4urry+eef8+yzzxIREcFtt912wYnMCgoKaN26db3UWdspsKOionjqqad4/fXXsVqtQMWw1q9TSyclJXHVVVc5tC1/f38KCgpqV7A4JaeYpE2uDE2aNCExMZHExETKy8tZvXo1t99+u325zWZj1KhRTJ8+nWuuuQaoeCLXypUrLzh086umTZvaQ7c6Xl5elJSU0KJFCw4dOkTbtm0BCAgI4NChQ/j6+vLjjz9WaY+IiODs2bM0adKkyhfDM888Q2JiIitWrKBPnz588803GJc4i4rVarXP6S5SHR3xy2UhLy+Pffv2ARUzGebl5dG+fftKn3niiSe4+eabGTBggL0tPj7efrIVKmYt/b0uXbqwd+/eGmtITExk4cKFACxcuJBbbrkFqDi3MH/+/Grb3333XRISEqpsc+/evURERPCPf/yDDh06cPDgQW666SaWLFkCVJwnuNjUwy4uLpSXl9vf7969+4qejVTqj4JfLgunTp1i1KhRhIaGEh4eTkhICHfccUelz0ydOpV3333XfoI3Ly+PCRMmcOjQIcLDw+nWrRsLFiyosu0hQ4awbt06+/v//u//pl27dhw9epR27drx5ptvAvD3v/+d+fPnExQUhNVqtf+1kZaWhsViISgoiPXr1zNu3DgAhg8fTrNmzejUqRNvvPEGzz77bJV9p6en2/sUGhpKjx49GDduHLt376Znz56sXbvW/tfL740ePZru3bvbT+5mZ2czZMiQS/jXFWej2TlFqBhL/7//+z+uvvrqxi6lijZt2tQ4dl9aWsqAAQNYs2aN0zyBTC6dgl+EiiEgm81G7969G7uUKhwJ/v3797Nnzx4GDhzYQFXJ5UzBLyLiZDTGLyLiZBT8IiJORsEvIuJkFPwiIk5GwS8i4mQU/CIiTub/AdtOrR2H7MLzAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Plot the data points\n",
|
|
"plt.scatter(x_train, y_train, marker='x', c='r')\n",
|
|
"# Set the title\n",
|
|
"plt.title(\"Housing Prices\")\n",
|
|
"# Set the y-axis label\n",
|
|
"plt.ylabel('Price (in 1000s of dollars)')\n",
|
|
"# Set the x-axis label\n",
|
|
"plt.xlabel('Size (1000 sqft)')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Model function\n",
|
|
"\n",
|
|
"<img align=\"left\" src=\"./images/C1_W1_L3_S1_model.png\" style=\" width:380px; padding: 10px; \" > As described in lecture, the model function for linear regression (which is a function that maps from `x` to `y`) is represented as \n",
|
|
"\n",
|
|
"$$ f_{w,b}(x^{(i)}) = wx^{(i)} + b \\tag{1}$$\n",
|
|
"\n",
|
|
"The formula above is how you can represent straight lines - different values of $w$ and $b$ give you different straight lines on the plot. <br/> <br/> <br/> <br/> <br/> \n",
|
|
"\n",
|
|
"Let's try to get a better intuition for this through the code blocks below. Let's start with $w = 100$ and $b = 100$. \n",
|
|
"\n",
|
|
"**Note: You can come back to this cell to adjust the model's w and b parameters**"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"w: 100\n",
|
|
"b: 100\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"w = 100\n",
|
|
"b = 100\n",
|
|
"print(f\"w: {w}\")\n",
|
|
"print(f\"b: {b}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Now, let's compute the value of $f_{w,b}(x^{(i)})$ for your two data points. You can explicitly write this out for each data point as - \n",
|
|
"\n",
|
|
"for $x^{(0)}$, `f_wb = w * x[0] + b`\n",
|
|
"\n",
|
|
"for $x^{(1)}$, `f_wb = w * x[1] + b`\n",
|
|
"\n",
|
|
"For a large number of data points, this can get unwieldy and repetitive. So instead, you can calculate the function output in a `for` loop as shown in the `compute_model_output` function below.\n",
|
|
"> **Note**: The argument description `(ndarray (m,))` describes a Numpy n-dimensional array of shape (m,). `(scalar)` describes an argument without dimensions, just a magnitude. \n",
|
|
"> **Note**: `np.zero(n)` will return a one-dimensional numpy array with $n$ entries \n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def compute_model_output(x, w, b):\n",
|
|
" \"\"\"\n",
|
|
" Computes the prediction of a linear model\n",
|
|
" Args:\n",
|
|
" x (ndarray (m,)): Data, m examples \n",
|
|
" w,b (scalar) : model parameters \n",
|
|
" Returns\n",
|
|
" y (ndarray (m,)): target values\n",
|
|
" \"\"\"\n",
|
|
" m = x.shape[0]\n",
|
|
" f_wb = np.zeros(m)\n",
|
|
" for i in range(m):\n",
|
|
" f_wb[i] = w * x[i] + b\n",
|
|
" \n",
|
|
" return f_wb"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Now let's call the `compute_model_output` function and plot the output.."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAERCAYAAAB8eMxzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deVhU9f4H8DeboiQMCMqi4oK4IIgLOqDI6oIr+XT1KpnZTazEflnXrFuZZEVeTbMylyhRg7Q0F7TUSBDBcA/Ea4IoLiCKCIKKCMP5/THOOCM4DDCHbd6v5+HROTNz5nMo3xy+53u+HwNBEAQQEZHeMGzsAoiIqGEx+ImI9AyDn4hIzzD4iYj0DIOfiEjPMPiJiPQMg5+apK5duyIlJUVt2yuvvILFixeL9pkuLi44fvy4TvcZFRUFY2NjPPPMM7CwsIBUKsWff/7ZoDUQPYnBT/TI2bNn4eHhofP9BgYG4u7du7h16xZGjBiByZMn48nbZ8rLy0WtgUgVg5+arVWrVqFbt27o0KED5syZg9LSUgDys+wxY8YoX5ednQ1TU1MAQGVlJebOnQtra2vlGbgidFV/y/D19cVHH32EwYMHw8LCAtOmTcPDhw+V+1y8eDFsbGzg7OyM5cuXo2vXrjXWa2JigpkzZyIvLw8FBQXw9fXFokWLMHDgQEgkkio13Lt3D6+99hocHBxgaWmJGTNmKPe1bds2uLi4wMrKChMnTsTNmzcBADdu3MCoUaNgYWGB9u3bIywsrK7fXmrBGPzULO3fvx/Lly/HgQMHkJmZiaysLCxZsqTG9x04cADHjh3DpUuXcPv2bXzxxRcwNKz+n8HPP/+MX375BZcvX0ZaWhq2bt0KAIiNjcXGjRtx/PhxHDlyBNu2bdOq5ocPHyIqKgoODg6wtrYGAPz444/Ytm0bbt26VeX1b7zxBq5cuYLU1FTcvHkTc+bMAQAcP34cb775JrZs2YIbN26gd+/eePXVVwEAK1euRM+ePVFQUIBr166p/bAgUmDwU5M1cuRISCQS5deGDRuUz23duhVz5sxBz549YWFhgUWLFmHLli017tPExAQlJSXIyMiAoaEhpFIpjIyMqn3t7Nmz0aVLF0gkEowbNw6pqakAgO3bt2P27Nno2rUrrK2t8frrr2v8zD/++AMSiQQODg44fvw4duzYofYZ3bt3R5s2bdTeU1lZic2bN+PLL7+EtbU1TExMMHz4cADAd999h7CwMLi6usLExASLFi3C7t27UVFRARMTE1y/fh05OTlo06YNhg4dWuP3hPQPg5+arN9//x1FRUXKr1mzZimfy83NRefOnZWPHR0dcf369Rr3GRAQgNmzZ2PmzJlwcHDQeLG4Q4cOyr+3bdsWd+/eBQDk5eWhU6dOyuccHBxq/MyioiLk5+cjISFBbQxf9RhU5efn4+HDh9UOIV25cgXh4eHKH4idOnWCsbEx8vLysGDBAjg4OMDLywv9+vXD9u3bNdZG+onBT82Svb09rl69qnx85coV2NnZAQDMzMxw//595XM3btxQe+9bb72F9PR0JCYm4rvvvsPvv/9eq8+2tbVFTk6O8rHq32vLwMCg2u02NjZo1aoVLl++XOU5BwcHfPrpp2o/FEtLS9GpUyeYm5vjq6++Qk5ODj7//HNMnz5d+QOLSIHBT83SP/7xD6xfvx4XLlxAcXExlixZgilTpgAA3NzccPLkSZw/fx4lJSX47LPPlO87ceIETp48CZlMBnNzcxgbGz91qOdpJk+ejG+//RaXL19GQUEBvv76a50eGwAYGhrihRdewP/93/+hoKAA5eXlSE5OBgDMmjULX375pXLo6fbt29i1axcA4Ndff0V2djYAwNLSEgYGBrU+Pmr5GPzULAUFBWH+/PkICAiAk5MTHB0dsWjRIgBAr1698Pbbb8PT0xP9+/fH6NGjle+7c+cOZs6cCQsLC7i5uWHatGnw9/ev1WdPnDgRzz//PAYNGoShQ4di3LhxaN26tU6PDwBWrFgBe3t7uLi4oGPHjli/fj0AwMvLC8uWLcMLL7wAc3NzDBw4UPlD4e+//8aIESPwzDPPICQkBBs3bqxy/YDIgOvxE9XPpk2bEBUVhYMHDzZ2KURa4Rk/UR3s2rULFRUVuHLlCpYvX45JkyY1dklEWuMZP1Ed+Pj44NSpUzAzM8OUKVOwfPlytGrVqrHLItIKg5+ISM9wqIeISM8YN3YBmty5c6exSyAiatYsLCyqbOMZPxGRnmHwExHpmSY91KOqul9XiIioqpqGyXnGT0SkZ5rNGb9CWVkZ7ty589TFraj2BEGAmZkZzMzMGrsUImoAzS7479y5A2tr66c2z6C6uXnzJoOfSE80u/Q0MDBg6IuAv0ERNSHh4YCisdCWLfLHOiRagmZnZ6Njx47w9fXFqFGjAADLli3D8OHDERISouxzGh0dDS8vL4wfPx7FxcVilVMn+/fvh7e3N3x9ffHmm29CJpPVeh8WFhbw8/PD8OHDkZGRUav3JiQkKBuFzJs3r9rXZGdnKxcHy8vLwyeffFLrGomoCVm8WP4VEgIEB8v/VGzTEVFPnUeOHImEhAQcOHAA+fn5iI+PR1JSEtzc3LBz506Ul5dj7dq1SExMxIwZM7Bu3Toxy6mVW7du4ZNPPsG+ffuQkJAAGxsbfPvttzW+r7KyUu2xq6sr4uPj8fnnn+O///2vxtdq8tVXX1W7XTX4bW1t8d5772m9TyJqYsLDH5/dV1YCu3bJ/3zyuXoSNfjj4+Ph7e2NlStX4tixY/D19QUABAYGIiUlBRkZGXB1dYWxsbFyW20YGNTvS5O9e/dixowZynHv+fPnK3ulKnqfZmdn48UXXwQASKVSvPrqq/j3v/9d7f7c3d1x7do1REVFYerUqRg3bhzS0tLw0UcfwdfXF/7+/soGGi+99BICAwOxefNm5fsVn5mcnIxhw4bBz88PW7duxfr167F582YEBAQgOzsbzz//PADghx9+gFQqxbBhw5QNOzw9PREWFgZ3d3fs27evVt9rImoAvXoBTxvKNjSUP68Dol3ctbOzQ0ZGBlq3bo1JkyahuLgYHTt2BCAf/igsLERRURHMzc3VtjUV169fh6urq/KxqakpHj58+NTX37p1C++9955aL1ZViYmJ6PXoP5pEIsHWrVtx5swZ5OTkICEhAefOnUNERAT+9a9/wcjICHFxcfj000+rfOY777yDXbt2wdraGpWVlejYsSO6d++Ojz/+WPmDQyaT4csvv0RycjJycnIQFhaGPXv2oKCgAIsWLUJ5eTnCwsIwZsyYen6XiEin/vlP+Zj+o45qaiZMkD+vA6IFf+vWrZVdicaPHw9zc3Nlb9Li4mJlo2jFuL5iW1NhZ2eH3Nxc5eMHDx7AxMRE7TWqC5t26NCh2tA/c+YM/Pz8IJFI8M0332D//v0YNGgQAODcuXNISEhQ/iZkZ2eHixcvYsCAAQCAQYMG4c8//6yyT2trawB46kXu/Px8ODo6wsTEBF27dlXezGFjY6NsIF5UVKTV94GIGtCWLUBsbPXPxcbKn9dB+Is21FNSUqL8e3JyMpycnHDo0CEAQFxcHKRSKZydnZGeng6ZTKbc1lQEBQVh06ZNuHfvHgBg5cqVCA4OBiD/IQDIQ13haSGsGOPfsWOHshm44rW9evXCqFGjkJCQgISEBGzatAndunVTDs2cPn26yv4MDAxQUFAAQH6NwMTEpMpFZxsbG2RnZ6O8vBzZ2dnKu55VZ+5wNW6iJuj8+cdj+k+qrJQ/rwOiBf/hw4cxaNAgeHl5wd7eHkOHDsWIESMwfPhw/PXXXwgODoaJiQlmz54Nb29vbNy4EXPmzKnVZwhC/b406dChA959912MGTMGPj4+uHHjBkJDQwEA48aNw/Dhw5U/yOqqf//+sLW1ha+vL/z8/LBhwwYMHToUZWVlCAgIqHYWUEREBCZMmAA/Pz/8/PPP6NevH5KTkzF16lTla4yMjBAWFgZvb29Mnz4dS5YsqVedRNRAPvxQ/gXIx/QnTXo85q/6XD016UYsqutNKM5a8/PzYWNj01gltVj8vhI1IeHh8gu5ijH/8+drFfrVZaeqZnfnLhFRi6ca8jq6oKuKt8ASEekZBj8RkZ5h8BMR6RkGPxGRnmHw18DJyQlbFKvkVeOvv/7CqVOnarXPhIQEvP/++8rHxcXFyiUZFLy8vFBaWlrlvS+++CIuXLhQq88jIlLVMoNfR0uapqamwtvbG7FPu5MOdQv+J5mbm8PCwgLXrl0DAFy6dAl2dnZo06ZNvfZLRFSdlhf8OlzS9JdffsFrr72G+/fvo6ysDACwc+dOSKVS+Pn54dChQ1i/fj2WLVuGkJAQREVFITIy8lEZi5GQkIDc3FzlssyvvfbaUz/r2Wefxc6dOwEAO3bswLPPPosNGzbA19cXgwcPxoEDB544zMWIi4sDIP8tIDs7G6WlpZg2bRr8/f0xdepUlJeXY8eOHRgyZAj8/f3x66+/1vp7QEQtT8sKfh0vaXrq1Cl4eHhgzJgxiIuLQ2VlJT755BPEx8crVx4NDQ3FggULEB0dXe0+rK2t8fvvvyMpKQnFxcXIzMys9nWTJk3Cnj17AAB79uzB+PHjMXXqVCQkJOCPP/7A8uXLa6w3MjISEydOxMGDB+Hr64tt27Zh+/bt+Omnn3Dw4EEEBQXV6viJqGVqWTdwKZY0rW6ti1ouaZqVlYX09HSMGTMGZWVlcHZ2xuDBg+Ho6KgcgnlyfZ7q1sIpKCjAq6++iqKiImRnZ6st/KbKxsYGFRUVOH/+PFq3bg2JRIIdO3Zg1apVEAQBN2/erPGzzp07h5MnT2LdunV48OABpk2bhvfffx8ff/wxKioq8N5776Fnz55afw+IqGVqWWf8//ynfOnS6tRySdPt27cjMjIS+/btQ3x8PK5fvw5ra2tcuXJFuUjbk4ukWVhY4Pr16wAeL+AWExOD4OBgJCQkYNiwYRoXR5swYQLmzJmDiRMnApCvy/Pbb79h165dVX7IKD5LEAScPXsWgHzRt7fffhsJCQlISUnBa6+9BkdHR0RGRiI0NBQrVqzQ+viJqOVqWcGvzZKmWtq7dy+8vLyUj/v27YukpCS8++678PHxgb+/Pw4fPgypVIoffvgB8+bNQ0BAAPbt26cMbgDw9/fH559/juDgYOVKn08zefJkHD58GJMmTQIgX856xIgReO+996osWT158mR88cUXmDJlCiwtLQEAoaGh2LFjBwICAuDv749Tp05h8eLF8PHxwbx589QWciMi/dWyFmkLD9d8EXfxYp2tbtfScJE2opajpkXaWtYZfwMtaUpE1Jy1rIu7gPys3sCgXkuaEhG1ZC0v+AHRlzQlImrOmt1QjyAIqHxaazKqsyZ8qYeIdKzZnfFLJBLcunVLbR471Y8gCDAzM2vsMoiogTS74G/VqhU6dOjQ2GUQETVbzW6oh4iI6ofBT0SkZxj8RER6hsFPRKRnGPxERHqGwU9EpGdED/4VK1Yo+8laWFjA19cXvr6+uH37NgAgOjoaXl5eGD9+PIqLi8Uuh4hI74ka/GVlZUhNTVU+dnV1RUJCAhISEmBlZYXy8nKsXbsWiYmJmDFjBtatWydmOUREBJGDPzIyEjNnzlQ+PnfuHLy9vfHOO+9AEARkZGTA1dUVxsbGCAwMREpKipjlEBERRAz+8vJyHDp0CP7+/sptmZmZSExMRGFhIWJjY1FUVARzc3MA8mGgwsJCscohIqJHRAv+zZs3Y/r06WrbrKysYGBggODgYKSnp0MikSjH9YuLi6t0mSIiIt0TLfjPnz+PNWvWYMyYMTh79ixWrVql7E2bnJyMHj16wNnZGenp6ZDJZIiLi4NUKhWrHCIiekS0RdqWLl2q/Pvw4cPh4+MDDw8PmJmZoXv37ggPD4eRkRFmz54Nb29vWFpaIiYmRqxyiIjokWbXc5eIiDTTr567RERUoxqHesrKyvDbb7/h6NGjyMvLg6mpKXr37o1Ro0ahT58+DVEjERHpkMahnkWLFuH333+Ht7c3BgwYABsbG5SVleHChQs4fPgw7t69i88++wzu7u6iFMehHiKi2qspOzUGf3x8PPz8/J6688LCQly9ehVubm71LLN6DH4iotqrV/BXR+ywV8XgJyKqPZ1c3PX29kZJSQny8/MxYMAAvP7665g7d67uqiQiogajVfDfu3cP7dq1w7Zt2zB79mwkJCQgOTlZ7NqIiEgEWgV/RUUFDh06hKioKEyYMEG5jYiImh+tgv+rr77C559/jmeffRZubm64dOmSxou+RETUdNV4cVcmk+Hll1/Ghg0bGqomJV7cJSKqvXpf3DUyMkJeXh5KS0t1WxkRETUKrRZpa9++PQYMGIDRo0fDzMxMuf3TTz8VrTAiIhKHVsE/cuRIjBw5UuxaiIioAXB1TiKiFkYnN3Clp6dj7Nix6NatG+zt7ZVfRETU/Gg11PPyyy9jzZo1eOmll5CUlIQNGzagqKhI7NqIiEgEWt/ANWDAAMhkMpiZmSEsLAy//fab2LUREZEItDrjb9u2LcrLy+Hm5obw8HDY29vj7t27YtdGREQi0OqMPyoqChUVFVi9ejUEQcC5c+ewfft2sWsjIiIRcFYPEVELU1N2ahzqsbOzg4GBAQRBqPbP3Nxc3VdMRESi0hj8169fb6g6iIiogWgM/gMHDmh886hRo3RaDBERiU9j8P/4449Pfc7AwIDBT0TUDIl+cXfFihX45ZdfkJSUhGXLlmHXrl1wdHREVFQUTExMEB0djdWrV8PKygoxMTEwNzdXvpcXd4mIak8nSzZcuHABo0aNQufOndG5c2eMHj0aWVlZNb6vrKwMqampAID8/HzEx8cjKSkJbm5u2LlzJ8rLy7F27VokJiZixowZWLdunbbHRUREdaRV8M+aNQvz58/H1atXcfXqVcyfPx8vvvhije+LjIzEzJkzAQDHjh2Dr68vACAwMBApKSnIyMiAq6srjI2NlduIiEhcWgV/cXExgoKClI/HjBmD4uJije8pLy/HoUOH4O/vDwAoKipSDuNYWFigsLCw2m1ERCQurZZscHFxwVtvvYVp06bBwMAAW7ZsgYuLi8b3bN68GdOnT1c+lkgkyMnJASD/QSKRSCCRSJQ/QBTbiIhIXFqd8X/33XewtbXFJ598giVLlqBDhw747rvvNL7n/PnzWLNmDcaMGYOzZ8/ixIkTOHToEAAgLi4OUqkUzs7OSE9Ph0wmU24jIiJxNciSDcOHD0dSUhKWLl2K2NhYdOnSBVFRUWjVqhU2b96MNWvWwNLSEjExMWpXoDmrh4io9mrKTo3B361bNxgYGDx15xcvXqxneZox+ImIaq9ea/X8/fffEAQBn3zyCWxtbTF16lQIgoCtW7fWeHGXiIiaJq2Gevr376+cj68wZMgQHDt2TLTCAJ7xExHVhU5u4Grfvj2++eYbFBQUoKCgAKtXr4aZmZnuqiQiogajVfBv2bIFZ8+eRWBgIAIDA3Hu3Dls3bpV7NqIiEgEbMRCRNTC6GSoh4iIWg4GPxGRntEY/NOmTQMA/Pe//22QYoiISHwa5/GnpqbizJkz2LhxI5599lk8eTnA2dlZ1OKIiEj3NF7c3bJlCzZu3IikpCQMHjxY/Y0GBjh48KCoxfHiLhFR7dVryQaFpUuXYuHChbqtTAsMfiKi2tNJ8N+/fx+rVq1CUlISAPmia2+88QbatGmjw1KrYvATEdWeTqZzvvTSSygqKsJnn32GiIgIFBcXY9asWbqrkoiIGoxWjVj+/vtvbNmyRfnYzc0N7u7uohVFRETi0eqM39zcHHv27FE+3rt3r7JlIhERNS9ajfFnZWXh9ddfx19//QVDQ0P0798fq1atQo8ePUQtjmP8RES1p5OLu42FwU9EVHtcq4eIiNQw+ImI9AyDn4hIz2gV/G+++SZKSkpQVlYGPz8/2NnZYcOGDWLXRkREItAq+OPj49GuXTvs2rULffr0QVZWFr744guxayMiIhFoFfwPHjxAWVkZtm3bhueeew5t27YVuy4iIhKJVsE/Z84cdO7cGSUlJfDz88OVK1fQrl07sWsjIiIR1Hkef0VFBYyNtVrxoc44j5+IqPZqyk6NyS0IArZt24a9e/ciNzcXAGBnZ4dx48bhueee0/jB6enpCA0NhZGREZycnPD9999DIpFgwIABAIBffvkFVlZWiI6OxurVq2FlZYWYmBguBUFEJDKNZ/wzZ86EsbExpk+fDgcHBwBATk4OYmJi8PDhQ2zevPmpOy4vL4eJiQkAYNasWXjttdcwf/585dLOitf4+/sjPj4e27dvx5UrV7BgwQLl8zzjJyKqvXqd8f/555/IyMhQ29a7d28EBATU2HZREfoA0Lp1a3Tu3Bnnzp2Dt7c3hg0bhoiICGRkZMDV1RXGxsYIDAxEaGioVgdFRER1p/Hirp2dHSIjI3Hv3j3ltnv37mH9+vWwtbWtcee7d+9Gv379cPPmTbRv3x6ZmZlITExEYWEhYmNjUVRUpBzasbCwQGFhYT0Ph4iIaqIx+Ldt24b//e9/GDhwIDp16oROnTph0KBBOHfuHLZt21bjzidOnIj09HQ4ODhgz549sLKygoGBAYKDg5Geng6JRILi4mIAQHFxMSQSiW6OioiInkrjUI+NjQ1WrFiBFStW1HrHZWVlaN26NQD5ev6tWrWCTCaDkZERkpOT4erqCmdnZ6Snp0MmkyEuLg5SqbRuR0FERFqrcT7m8ePHq53VM2TIEI3v27dvn/IHRs+ePWFnZwcPDw+YmZmhe/fuCA8Ph5GREWbPng1vb29YWloiJiZGB4dERESaaJzV88477+DEiROYNm2a2qyeH3/8EYMGDcLSpUtFLY6zeoiIaq9ejVicnZ2rzOoB5PP7nZ2dkZmZqaMyq8fgJyKqvXo1YmnXrh3i4uKqbI+Li+OSDUREzZTGMf4tW7Zg4cKFmDVrFmxsbCAIAm7duoXBgwfjxx9/bKgaiYhIh7Raq0cQBBQUFAAA2rdvDwMDA9ELAzjUQ0RUF/W6cxcA8vLysG/fPrVZPWPGjIGdnZ0OyyQiooaicYz/yy+/xMiRI5GVlQUrKytYWVnh4sWLGDVqFL788suGqpGIiHSoxlk9Z8+eVVt3B5DfnOXq6lrtjB9d4lAPEVHt1WtWj4mJCS5evFhl+6VLl0Rfi5+IiMShMb0jIyMREhICIyMj5Q1c165dQ2VlJSIjIxukQCIi0i2tZvXk5uYqL+7a29vD3t5e9MIADvUQEdVFvWf1ANWHfXp6Ovr161fP8oiIqKFp1Wy9OmPHjtVlHURE1EA0nvFPnz692u2CIOD27duiFEREROLSGPz79u3D5s2b8cwzz6htFwQBBw8eFLUwIiISh8bgDwgIQLt27TBixIgqz3l4eIhWFBERiUerWT2NhbN6iIhqr143cBERUcvD4Cci0jMMfiIiPaP1gjulpaW4fv06KioqlNucnZ1FKYqIiMSjVfB/+umnWLt2Lbp3765swmJgYMApnUREzZBWwb9x40acP38ebdq0EbseIiISmVZj/L169UJZWZnYtRARUQPQ6oz/4cOH6NOnD7y8vNC6dWvl9piYGNEKIyIicWgV/O+++67YdRARUQPRGPwVFRUwNjaGp6dnrXecnp6O0NBQGBkZwcnJCd9//z2WL1+OXbt2wdHREVFRUTAxMUF0dDRWr14NKysrxMTEwNzcvM4HoxQeDvTqBfzzn8CWLcD588CHH9Z/v0RELYDGMf7g4GAA8jH+3r17K78UjzXp1asXjhw5gsOHDwMATpw4gfj4eCQlJcHNzQ07d+5EeXk51q5di8TERMyYMQPr1q2r/xEtXiz/CgkBgoPlfyq2ERE1cUVFwIEDwJUr4n2GxjP+PXv2AJD32K0t1QbtrVu3RkZGBnx9fQEAgYGBiImJQd++feHq6gpjY2MEBgYiNDS01p+jJjxc/gUAlZXArl3qzxkY8MyfiJqMigrgzBkgJQU4elT+9fff8ue++AL4v/8T53M1Bv+BAwcwatSopz5/69YtXL16FQMGDKj2+d27d+M///kPnJ2dUVFRoRzGsbCwQGFhIYqKiqpsq5devQBDQ3noP8nQUP48EVEjuXZNHu6KoD9xAigtrf61R4+KV4fG4D927Bg+/PBDeHp6wt3dHdbW1igrK8PFixeRmJgIQRDw6aefPvX9EydOxMSJEzFv3jwYGxujuLgYAFBcXAyJRAKJRFJlW70oxvRVz/QVJkyQP09E1ADu3QNOnnwc8ikpwKPW5VpJSRGvNo3B//7772PhwoWIi4tDSkoKkpOTYWpqit69e2PlypXo3r37U99bVlamnPppbm4OmUyGQ4cO4e2330ZcXBykUimcnZ2Rnp4OmUym3FYvW7YAsbHVPxcbK3+e4U9EOlZZKZ9Dojpkc+YMIJPVfl8GBkC/fsDQofKhIGOtF9bRXo27NDExQVBQEIKCgmq143379mHFihUAgJ49e2LJkiW4fv06hg8fji5duuCNN96AiYkJZs+eDW9vb1haWtb/voDz56sf5gEe/5chIqqnW7fUh2yOHQNUlsCvlY4dAalU/jV0KDB4MNCunW7rfVLLa8SyeLH8Qq6hoXx4JzZWHvoffsiZPURUa2VlQGqq+pDNxYt125epKTBwoDzgFUHfpYv8LF+XaspOEX6JaGSLF8u/i5zHT0S1JAhAdrZ6yJ8+DTx8WLf99eypHvJubkCrVjotuU5a3hk/EZGW7twBjh9/PC6fkgLk59dtX5aWwJAhj0N+yBCgfXvd1qstnZzxnz59Gq+++iry8/ORlZWFM2fOICYmBhEREbqrlIhIRDIZcPas+tn8uXPys/zaMjaWn70rQn7oUPnZvWEzaW2l1Rm/p6cnYmJiMHnyZJw+fRoA0K9fP6Snp4taHM/4iaiucnPVz+RPnJBPsayLzp3Vh2wGDgTattVtvbqkkzP+yspKdOvWTW2bkZFRPUsjItKN0lL5nHnVmTZXr9ZtX2Zm8pk1qmfz9va6rbexaRX8PXv2VC7fkJeXh6+//hoDBw4UtTAioupUVgKZmepn82lp8jnvtWVgAPTpox7yLi7izJ1vSpnTC4kAABKQSURBVLQa6rl79y6WLFmCP/74A4B8rZ0PPvgAZmZmohbHoR4iKiiQz5NXhPyxY0BdV3exsVEPeQ8PoCVGS03ZqVXwy2SyKkM71W3TNQY/kX55+FB+9q46ZJOZWbd9tWr1eM68Yny+a1fdz5lvinQyxu/t7Y19+/YpF1S7c+cOxo4di+TkZB2VSUT6RhDkSw+rhvypU8CDB3XbX/fuj8/mpVKgf39ApWEgqdAq+O/fv6/WIMXCwgL36np5nIj0UkmJfGaNatDn5dVtX+bm6mfyQ4bIh3FIO1oFv0QiQWJiIkaMGAEASExM1E2nLCJqkWQy+Rx51ZA/e/bpS2lpYmgonzOvGvSKFdipbrQK/jVr1mDmzJm4e/cuAKBdu3bYuHGjqIURUfNx44Z6yB8/Lj/Drwt7e/Uhm0GD5FMsSXdqtWRDyaP/ku3EXjruEV7cJWp6HjyQr1+jugRxdnbd9tWmjXzOvOrNUZ066bRcvVSvi7tff/01wsLC8O6778KgmkvhmpqwEFHzJwhAVpb62fxffwHl5XXbX+/e6iHfrx+g0qWVGojG4Hd0dASAGhurE1HLUFQknyevejZfUFC3fbVvrz4u7+EhX8iMGp/G4J8wYQJkMhkSEhKwYcOGhqqJiBrAk42+U1Lq3qvIxARwd1c/m+/RQz/mzDdHNV7cNTIyQl5eHkpLS9GmTZuGqImIRHDtmvqZvKZG3zXp2lU95AcMkDcZoeZBq1k97du3x4ABAzB69Gi1ZRo4xk/UNN2793jOfF0afatq104+TKO61EHHjrqtlxqWVsE/cuRIjBw5UuxaiKgOnmz0nZICpKfXrdG3oaF8kTLVs/k+fQAuxtuy1Bj8O3bsQH5+Pvr27YuxY8c2RE1EpEF+vvqZ/PHjdW/0bWurHvIN0eibGp/G4A8NDUVmZiakUik++ugj/Pnnn1iyZElD1Uak98rK5NMnVYO+vo2+VYdsxGj0TU2fxhu4+vXrh7S0NBgaGqK0tBTDhg3DqVOnGqw43sBF+kSMRt+qId9UGn2T+Op1A1erVq1g+GhBDM7oIdIt1UbfirBvCY2+qenTGPxnzpyB/aOeY4IgoKCgAPb29hAEAQYGBsit6zQBIj1TUSFfpEw15HXV6FsqlZ/dc8iGtKUx+Mvrel82kZ7TdaNv1SGbpt7om5o+0TpLHj16FPPnz4eRkREGDx6MlStXwsLCAgMGDAAA/PLLL7CyskJ0dDRWr14NKysrxMTEcLlnanbu35c3ENFVo28Pj8ch3xIbfVPjEy34HR0dcfDgQZiamiIkJARnzpyBq6srEhISlK8pLy/H2rVrkZiYiO3bt2PdunVYsGCBWCUR1Ztqo29FyOuq0bdUCvTt2/IbfVPjE+1/MVtb28cfYmwMIyMjnDt3Dt7e3hg2bBgiIiKQkZEBV1dXGBsbIzAwEKGhoWKVQ1QnikbfipDXVaNvqVQ+Z56T1agxiH5ukZaWhlu3bqFv377IzMyEpaUlXnnlFcTGxqJ9+/bKoR0LCwsU1vVfFJEOsNE36QtRg//27dsICwvDTz/9BACwsrICAAQHB+P06dOYNGkSiouLAQDFxcWQSCRilkOkVF2j75Mn5TdM1UWPHuohz0bf1JSJFvwVFRV4/vnnsWzZMtja2uLevXswNTWFkZERkpOT4erqCmdnZ6Snp0MmkyEuLg5SqVSsckjPKRp9q65OWddG3xYW8nnybPRNzZVowf/zzz/j+PHjWLhwIQAgIiICc+fOhZmZGbp3747w8HAYGRlh9uzZ8Pb2hqWlJWJiYsQqh/SIotG3asjrotG3Ynyejb6puatVz92GxiUbSBtiNPpWhDwbfVNzVK8lG4iamicbfaekAJcv121fbPRN+orBT02WotG36pANG30T1R+Dn5qMwkL5PHlFyOui0bci5Nnom+gxBj81CjEafauuZ8NG30RPx+CnBqHa6DslRT5nno2+iRoHg590TrXRtyLs2eibqOlg8FO9VFYCf/+tvgRxfRt9q4Y8G30T6R6Dn2rlyUbfx44Bj1bdqDVbW/WQZ6NvoobB4KenUm30rRiy0VWjb6lU3mCEF2CJGh6DnwDI58xfuqQe8rpq9C2Vypc94Jx5oqaBwa+ndN3oW7VjFBt9EzVtDH49oOtG3/37qy9BzEbfRM0Lg78FUjT6VoS8rhp9S6Xycfo2bXRbLxE1LAZ/M6do9K26no0uGn0rwt7OTrf1ElHjY/A3I4pG36ohn5patznzBgbyxt6qQzZs9E2kH/jPvAl7stH30aNAUVHd9tWhg3rIe3gAj9odE5GeYfA3EYpG36ohr4tG34ohGzb6JiIFBn8jUDT6Vg15XTT6VoQ8G30TkSYM/gZQUvJ4zrxits2NG3XbFxt9E1F9Mfh17MlG3ykp8jn0dZkzb2QEuLqy0TcR6RaDv57y8tTP5I8fB+7erdu+HBzUQ56NvolIDAz+WnjwQD5nXjXo69voW3V1Sjb6JqKGwOB/CkEALlxQD/nU1Po1+lYNeVdXzpknosbB6HlEtdG3Yp35+jT6Vg35IUMAiUS39RIR1ZVeBn95ubzRt+p6Nrpq9C2VAt27c848ETVdogX/0aNHMX/+fBgZGWHw4MFYuXIlli1bhl27dsHR0RFRUVEwMTFBdHQ0Vq9eDSsrK8TExMBchNtJdd3oWzXk3d3Z6JuImhcDQajLRMOa5eXlQSKRwNTUFCEhIXjllVcQERGBX3/9FUuXLkX37t0RHBwMf39/xMfHY/v27bhy5QoWLFig3MedO3eUf7ewsKjV59+7B8yYUf9G34o582z0TUTNRU3ZKdoZv62t7eMPMTZGWloafH19AQCBgYGIiYlB37594erqCmNjYwQGBiI0NFRnn9+2LXDkiPY3ShkaAv36qa9n07s3G30TUcsj+hh/Wloabt26BYlEAqNHKWphYYHCwkIUFRUph3YU23TFwEAe4Lt3V/+8aqNvqVQ+tfKZZ3T28URETZaowX/79m2EhYXhp59+wsmTJ5GTkwMAKC4uhkQigUQiQXFxsdo2XVIEv6mp/GYo1Zuj2OibiPSVaDf/V1RU4Pnnn8eyZctga2sLDw8PHDp0CAAQFxcHqVQKZ2dnpKenQyaTKbfp0owZ8u5TxcVAUhLw+efAP/4BdOnC0Cci/SXaGf/PP/+M48ePY+HChQCAiIgIjBgxAsOHD0eXLl3wxhtvwMTEBLNnz4a3tzcsLS0RExOj0xo6d5Z/ERHRY6LN6tGF+szqISLSVzVlJ9d5JCLSMwx+IiI9w+AnItIzDH4iIj3TbBZpU71YQUREdcczfiIiPcPgJyLSM016Hj8REekez/iJiPRMiwn+3NxcDBw4EKampqioqKjynL+/P7y8vBAXF9dIFeqepmMODw+Hp6cnPD098ccffzRShbqn6ZgBQBAE9O/fH5GRkY1Qne5pOt4HDx7gX//6F/z9/TFv3rxGqlD3NB3zoUOHMHToUEilUqxdu7aRKtS9o0ePwsvLC97e3pg/f77ac6Lkl9BClJaWCrdv3xZ8fHyE8vJytefmzZsnJCcnCyUlJYKPj0/jFCgCTcd88eJFQRAEobCwUPD29m6M8kSh6ZgFQRB27twpBAYGCt9++20jVKd7mo536dKlQlxcXCNVJh5NxzxhwgTh8uXLgkwmE4YMGdJIFere9evXhdLSUkEQBGH69OlCWlqa8jkx8qvFnPGbmprC0tKy2ufS0tLg6emJZ555Bu3atUNJSUkDVycOTcfcrVs3AEDr1q1h0IKWItV0zADw448/YurUqQ1Ykbg0HW9CQgJ2794NX19f7H5a44lmSNMxu7i44M6dOygrK4OZmVkDVyYeW1tbmD7q4WpsbKzsXQKIk18tJvg1kclkyvDTdcOXpm7x4sWYM2dOY5fRIPbv3w8fHx8YGzeb21PqJSsrC+PGjcPevXuxZMmSaoe+Wprg4GCMHz8evXv3RkhISGOXo3OKxlV9+/ZVbhMjv/Qi+FV/eorR8KWp2rFjBwoKCjB9+vTGLqVBREZGYtasWY1dRoOxsLCAj48PzMzM4OTkhBva9hltxhYsWICkpCRkZmZi06ZNuH//fmOXpDOKxlXfffed2nYx8ksvTo3c3Nzw559/ws3NDcXFxcp2jy1ZWloaVq9ejb179zZ2KQ0mMzMTwcHByMnJgSAIGD58OHr37t3YZYnGy8sLaWlpGDhwILKzs2FjY9PYJYnOyMgIEokErVq1gqGhIcrLyxu7JJ14snGVKlHySydXCpqAhw8fCgEBAYJEIhH8/f2FlJQUISwsTBAEQbh69arg5+cnSKVSYf/+/Y1cqe5oOuZRo0YJ/fr1E3x8fISJEyc2cqW6o+mYFTZs2NBiLu5qOt7c3Fxh5MiRwtChQ4XIyMhGrlR3NB3zb7/9JgwZMkSQSqVCeHh4I1eqOzExMYK1tbXg4+Mj+Pj4CEeOHBE1v3gDFxGRntGLMX4iInqMwU9EpGcY/EREeobBT0SkZxj8RER6hsFPzcaiRYvg4uICV1dXeHl54e7du8jNzcULL7xQ730vWbIE+/btAwBERESgS5cuVeZT37x5EyNGjICTkxNmzJgBmUwGACgtLcXEiRPRs2dPBAUF4e7duwCAyspKvPzyy3BycoKXlxdyc3PrXedzzz2H/v37Izo6GsuXL1duv3DhAmbOnFnv/ZN+YPBTs3DkyBEcOXIEqampOHPmDDZt2gQTExPY29tj06ZN9dr3w4cPsWfPHowZMwYAMHLkSKSkpFR5XUREBEJCQnDhwgWYmJhg27ZtAID169fDxcUFmZmZ8PT0xOrVqwEAsbGxuHfvHi5cuIBXXnkFS5YsqVedeXl5yMrKQmpqKkJCQtSC38nJCbdu3cLVq1fr9RmkHxj81Cxcv34dNjY2ynV4nJyc0Lp1a2RnZ0MqlQIAxo4dC3d3d7i7u8PU1BSpqakoKSlBSEgIPDw8MHToUJw8ebLKvuPi4uDp6al8PHjwYNjb21d53d69e5XLX0yfPl15V/SePXvw/PPPa9w+ZcoU7N+/v8o+ExIS4OrqCnd3dwwbNgwAcO/ePTz77LNwcXHB3Llzlb95jB8/HhkZGXB3d8eUKVNQUFAAd3d35TK+QUFB+Pnnn2v7rSV9pJPbwIhEdufOHaFPnz6Cm5ub8O9//1tIT08XBEEQLl26JAwdOlTttbt37xYCAgIEmUwmLFiwQNi1a5cgCIKQlZVV7VK+H3zwgbBhw4Yq2zt27Kj22N7eXvn3//3vf0JAQIAgCILQt29fobCwUBAEQbh//77Qo0cPQRAEYezYscLp06eV73FwcBAqKyvV9jl+/Hjh4MGDgiAIQlFRkSAI8uWW33rrLUEQBCE2NlZQ/DN98lifrC85OVmYMmVKleMgehLP+KlZMDc3x19//YXPPvsMZWVl8PT0xJkzZ6q87vLly3jnnXcQHR0NQ0ND/PHHH/jggw/g7u6OyZMnV7uQWV5eHqytrXVSZ22XwPby8sLChQvxzTffoKysDIB8WEuxtPT48ePRtm1brfZlY2ODvLy82hVMekkvFmmjlqFVq1YICgpCUFAQKisrsX//fjz33HPK58vLyzFt2jR8/fXX6NixIwB5R67ffvut2qEbBVNTU2XoamJmZoaSkhK0a9cOOTk5sLOzAwDY29sjJycHEokE165dq7Ld3d0dDx48QKtWrar8YHj33XcRFBSEPXv2wMPDA6dOnYJQx1VUysrKlGu6E2nCM35qFs6fP49Lly4BkK9keP78eXTu3FntNQsWLMDYsWPh5+en3BYYGKi82ArIVy19Uu/evXHx4sUaawgKCkJMTAwAICYmBuPGjQMgv7bwww8/aNz+008/YdSoUVX2efHiRbi7u+P999+Ho6Mjrl69imHDhmHr1q0A5NcJnrb0sIGBASorK5WPL1y40KJXIyXdYfBTs3D37l1MmzYNLi4ucHNzQ69evfCPf/xD7TWrVq3CTz/9pLzAe/78eSxatAg5OTlwc3ND3759ER0dXWXfo0ePxuHDh5WPP/74Y3Tq1An5+fno1KkT1q1bBwD4z3/+gx9++AFOTk4oKytT/rYxZ84cpKenw8nJCUeOHMHcuXMBAJMmTUKbNm3Qo0cPrFmzBh988EGVz16xYoXymFxcXNC/f3/MnTsXFy5cwIABA3Do0CHlby9Pmj59Ovr166e8uJuYmIjRo0fX4btL+oarcxJBPpb+/fffo0OHDo1dShW2trY1jt1XVFTAz88P8fHxetOBjOqOwU8E+RBQeXk5Bg0a1NilVKFN8F++fBlZWVnw9/dvoKqoOWPwExHpGY7xExHpGQY/EZGeYfATEekZBj8RkZ5h8BMR6RkGPxGRnvl/YAYw2WFJiVEAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"tmp_f_wb = compute_model_output(x_train, w, b,)\n",
|
|
"\n",
|
|
"# Plot our model prediction\n",
|
|
"plt.plot(x_train, tmp_f_wb, c='b',label='Our Prediction')\n",
|
|
"\n",
|
|
"# Plot the data points\n",
|
|
"plt.scatter(x_train, y_train, marker='x', c='r',label='Actual Values')\n",
|
|
"\n",
|
|
"# Set the title\n",
|
|
"plt.title(\"Housing Prices\")\n",
|
|
"# Set the y-axis label\n",
|
|
"plt.ylabel('Price (in 1000s of dollars)')\n",
|
|
"# Set the x-axis label\n",
|
|
"plt.xlabel('Size (1000 sqft)')\n",
|
|
"plt.legend()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"As you can see, setting $w = 100$ and $b = 100$ does *not* result in a line that fits our data. \n",
|
|
"\n",
|
|
"### Challenge\n",
|
|
"Try experimenting with different values of $w$ and $b$. What should the values be for a line that fits our data?\n",
|
|
"\n",
|
|
"#### Tip:\n",
|
|
"You can use your mouse to click on the green \"Hints\" below to reveal some hints for choosing b and w."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"<details>\n",
|
|
"<summary>\n",
|
|
" <font size='3', color='darkgreen'><b>Hints</b></font>\n",
|
|
"</summary>\n",
|
|
" <p>\n",
|
|
" <ul>\n",
|
|
" <li>Try $w = 200$ and $b = 100$ </li>\n",
|
|
" </ul>\n",
|
|
" </p>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Prediction\n",
|
|
"Now that we have a model, we can use it to make our original prediction. Let's predict the price of a house with 1200 sqft. Since the units of $x$ are in 1000's of sqft, $x$ is 1.2.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"$340 thousand dollars\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"w = 200 \n",
|
|
"b = 100 \n",
|
|
"x_i = 1.2\n",
|
|
"cost_1200sqft = w * x_i + b \n",
|
|
"\n",
|
|
"print(f\"${cost_1200sqft:.0f} thousand dollars\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Congratulations!\n",
|
|
"In this lab you have learned:\n",
|
|
" - Linear regression builds a model which establishes a relationship between features and targets\n",
|
|
" - In the example above, the feature was house size and the target was house price\n",
|
|
" - for simple linear regression, the model has two parameters $w$ and $b$ whose values are 'fit' using *training data*.\n",
|
|
" - once a model's parameters have been determined, the model can be used to make predictions on novel data."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.6"
|
|
},
|
|
"toc-autonumbering": false
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|